Главная » Статьи » Асбестоцемент

Асбестоцемент

Асбестоцемент представляет собой затвердевший цементный камень, армированный волокнами асбеста -волокнистого материала природного происхождения. Еще в XIX в. было замечено, что введение асбеста повышает пластичность цементного раствора и позволяет раскатывать его в тонкие листы, которые после затвердевания приобретают высокую прочность при действии растягивающих и ударных нагрузок.
Изготовление асбестоцементных блоков и плит, требовавшее большого расхода относительно дорогого асбеста, оказалось экономически невыгодным и не получило развития. Рентабельнее оказались асбестоцементные листы толщиной 4-7мм, которые широко используются и в настоящее время прежде всего как кровельный материал, более дешевый и долговечный, чем кровельное железо, получаемый путем тщательного перемешивания распушенного асбеста с цементом в водной среде и формования изделий из полученной суспензии на специальных машинах.
Материалами для изготовления асбестоцемента служат асбест, цемент специального назначения и вода.
Асбест представляет собой горную породу, состоящую из кристаллических минералов нитевидной формы, способных расщепляться на тонкие волокна, вплоть до размеров молекулярного порядка в поперечнике. Волокна асбеста эластичны, теплостойки, проявляют значительную адсорбционную активность, высокую механическую прочность, хорошо смачиваются водой.
Существуют две разновидности асбеста - хризотиловый (серпентиновый) и амфиболовый.
Хризотил-асбест - это волокнистый минерал серпентиновой группы, имеющий преимущественное промышленное применение. Доля его составляет около 95% в мировой добыче асбеста. Наиболее крупные мировые запасы асбеста сосредоточены в России, Африке и Канаде. Химический состав хризотил-асбеста Мд3512О5(ОН)4 (или в оксидной форме ЗМдО-23Ю2-2Н2О) соответствует составу водных силикатов магния. Основу кристаллической структуры асбеста составляют кремнекислородные тетраэдры, в которых атом кремния окружен четырьмя атомами кислорода. Тетраэдры способны создавать ассоциации через общие кисло-Родные вершины 5| - О - 5|. Состав таких комплексов может быть выражен формулой п[5Ю]2-, где п -»со. Ионы кислорода с ненасыщенными валентностями сверху и снизу комплекса связываются с Другими цепочками, образуя гексагональную сетку. За счет использования ненасыщенных связей возможно соединение двух сеток по плоскостям в пакет. Между сетками находится активный слой, который может состоять из Мg(ОН)2, АI(ОН)3 и др. соединений.
Значительно большие размеры иона магния в сравнении с ионом кремния являются причиной изгиба пакета и закручивания в трубку или спираль. Трубчатый характер структуры хризотил-асбеста подтвержден электронно-микроскопическими исследованиями. Исследования адсорбционных свойств хризотил-асбеста подтвердили, что он обладает внутренними капиллярами, закрытыми сорбированной водой.
Высокая удельная поверхность асбестовых волокон (15- 30м2/г) определяет его высокую адсорбционную активность, в особенности по отношению к гидроксидам щелочноземельных металлов, особенно к Са(ОН)2, что очень важно в его композициях с цементом.
При действии высоких температур асбест не горит, но подвержен необратимым процессам разложения: адсорбционная и структурная вода полностью удаляются из него при 600-770 °С, при 800-820 °С наблюдается переход асбеста в форстерит, при температуре 1550°С асбест плавится.
Распушенный асбест, в зависимости от насыпной массы, имеет низкую теплопроводность - 0,055-0,077 Вт/(м * °С).
Прочность волокон асбеста определяет прочность асбестоцементых изделий. Недеформированный асбест ведет себя при растяжении как истинно упругий материал, подчиняющийся закону Гука. Модуль упругости асбеста составляет 150-185- 103МПа, а прочность при растяжении образцов длиной 2-10мм составляет 3200-5400МПа. Прочность материала при технологической обработке снижается, но остается на довольно высоком уровне - до 700 МПа.
Для производства асбестоцементных изделий применяется специальный портландцемент, параметры которого должны обеспечивать технологию производства изделий на конвейерах формования тонколистовых изделий (фильтрационную способность асбестоцементной массы, оптимальные условия ее формовки, раздаточную и отпускную прочность). При автоклавной обработке отформованных изделий может применяться песчанистый цемент.
Как технологические добавки и специальные материалы используют вещества, улучшающие технологические сырьевых смесей и полуфабрикатов (полиакриламид, ПАВ пластифицирующего действия), а также свойства готовых изделий (красители, эмали).
Различают две основные разновидности асбестоцемента: с рассеянным и связанным расположением волокон.
При рассеянном расположении волокна находятся на таком расстоянии друг от друга, что каждое из них работает независимо. В материале со связанным расположением волокон сцепление между ними в зонах контакта создает условия для совместной работы волокон в материале. Рассеянное армирование может перейти в связанное при увеличении длины волокон или их числа в единице объема. В изделиях может преобладать армирование того или иного вида в зависимости от количества коротковолокнистого или длинноволокнистого асбеста. Такое же изменение вида армирования может произойти при сохранении длины волокна, но уменьшении его количества в единице объема асбестоцемента. Если же длина и количество волокна не изменяются, то уплотнение материала с плоскостным или сетчатым армированием сближает между собой плоскости расположения волокон, но характер армирования не изменяется.
Продукцией асбестоцементной промышленности являются: волнистые листы; плоские непрессованные и прессованные листы; трубы; электроизоляционные доски; специальные изделия - вентиляционные короба, листы для градирен, детали для гидроизоляционных сводов метрополитена и др.
возведении ограждающих конструкций зданий производственного назначения применяют асбестоцементные панели типа «сэндвич» с минераловатным или пенопластовым утеплителем. Изготавливают также экструзионные погонажные асбестоцементные изделия, многопустотные плиты и панели. Для водопроводных и мелиоративных систем широко применяют напорные, а для наружных канализационных трубопроводов, прокладки кабелей телефонной связи и др. - безнапорные асбестоцементные трубы.
Свойства асбестоцемента формируются в результате активного влияния асбестоцементных волокон на свойства цементного камня.
Предел пропорциональности, т.е. наибольшее напряжение, до которого материал следует закону Гука, для асбестоцемента составляет 2-5 МПа. Предел упругости его составляет 0,3-0,4 от величины разрушающего напряжения. Чистому растяжению в процессе эксплуатации асбестоцемент подвержен только в трубах, работающих под гидравлическим давлением.

Прогиб плоских асбестоцементных листов за счет ползучести при нагрузке, равной 50% от разрушающей, может возрасти в 3 раза по сравнению с прогибом при кратковременном действии нагрузки. С ползучестью связано снижение прочности асбестоцемента. Согласно исследованиям М.Ю. Харита, разрушающая нагрузка изгибаемых листов при ее действии в течение 10 сут. была на 20% меньше, чем при кратковременном действии силы.
Ударные нагрузки возможны при транспортных операциях и в процессе эксплуатации асбестоцементных изделий. Поэтому прочность при ударе является одной из главных механических характеристик асбестоцемента.
Последствия ударных нагрузок более серьезно влияют на асбестоцемент, чем статические нагрузки. Если на материал действует статическая нагрузка, близкая к разрушающей, после снятия ее прочность асбестоцемента изменится незначительно. Но если подвергнуть изделие ударной нагрузке, близкой к разрушающей, то его прочность снизится на 60 - 80%, хотя внешне никаких признаков разрушения может не быть. Это является следствием действия ударных волн на микроструктуру асбестоцемента. Асбестовое волокно может оказаться одновременно в различных фазах ударных волн, что вызывает напряжения растяжения и сжатия по его длине. В результате нарушается сцепление между асбестом и цементным камнем.
Столь сильное влияние ударных нагрузок на прочность асбестоцемента требует принятия специальных мер, исключающих удары при погрузке, перевозке, разгрузке и монтаже изделий (например, использовать специальные контейнеры для транспортировки изделий).
Асбестоцемент деформируется при водонасыщении и сушке. Набухание по толщине асбестоцементных листов 15-суточно-го возраста при погружении их в воду на 10 сут. составляет для непрессованных листов 2,4 мм/м, прессованных со средней плотностью 1,67-1,81 г/см3 - 1,6-2,4мм/м. Усадка в плоскости листа при сушке в течение 6 сут. составляет 2,2-2,4мм/м. Установлено, что волнистые листы имеют влажностные деформации в направлении поперек волн в 1,5-2 раза больше, чем плоские листы такой же ширины.
При одностороннем смачивании асбестоцементных листов они начинают коробиться. Причиной коробления является набухание листа с одной стороны. Эта часть листа удлиняется, в то время как длина сухой части листа остается неизменной. Лист изгибается выпуклостью в сторону смоченной поверхности. Величина коробления листов может достигать по стреле прогиба до 13-21 мм. Коробление листов опасно в асбестоцементных облицовках и конструкциях, особенно если листы закрепляются жестко. Значительное снижение величины коробления (до 40%) дает прессование листов. Снижает коробление применение песчанистого цемента с запаркой в автоклаве, увеличение плотности листов, использование длинноволокнистого асбеста. Однако самым радикальным средством является гидрофобизация листов, снижающая их водопоглощение и тем самым коробление. Для гидрофобизации могут быть использованы кремнийоргани-ческие соединения, мылонафт, стеарино-парафиновые эмульсии.
Удельная теплоемкость асбестоцемента мало меняется от величины соотношения между асбестом и цементом и в среднем составляет 0,938х 103Дж/кг°С. Теплопроводность асбестоцемента существенно зависит от содержания асбеста и его плотности. При максимальной плотности асбестоцемента 1,9г/см3 и естественной влажности она составляет 0,348 Вт/м°С. Коэффициент линейного расширения асбестоцемента составляет 83 107.
Теплостойкость асбестоцемента зависит от теплостойкости Цементного камня и асбеста. При нагревании до 250°С и охлаждении прочность асбестоцемента возрастает на 10-20%. Значительное снижение прочности наблюдается при нагревании до 400°С (до 15%) и 500°С (до 45%). При нагреве до 500-590°С дегидратируется Са(ОН)2. Свободная СаО поглощает пары из воздуха и увеличивается в объеме. В результате изделия после охлаждения растрескиваются. Нагрев в интервале 600-800°С приводит к дегидратации асбеста и компонентов цементного камня. После охлаждения такой асбестоцемент сохраняет не более 15-25% первоначальной прочности. Таким образом, теплостойкость асбестоцемента не превышает 500°С. Она может быть повышена при использовании вяжущего с кремнеземистыми добавками, которые химически связывают гидроксид кальция.
Разрушение асбестоцементных листов при многократном замораживании и оттаивании начинается с расслоения, так как самыми слабыми являются обедненные цементом граничные области отдельных слоев материала. Морозостойкость асбестоцемента улучшается с повышением морозостойкости цементного камня, а также с увеличением длины волокон асбеста и при гидрофобиза-ции изделий.
Асбестоцемент подвержен всем видам коррозии, которым подвержен и цементный камень. Стойкость асбестоцемента к химической коррозии возрастает при увеличении плотности материала.
Долго считалось, что асбестовые волокна, «вмонтированные» в твердеющий портландцемент в асбестоцементных изделиях, не испытывают изменений, могут срываться с поверхности изделий, особенно кровли, витать в воздухе и негативно воздействовать на легкие человека и животных. Однако, исследованиями последних лет показано, что асбестовое волокно весьма прочно закреплено в продуктах гидратации цемента и, химически взаимодействуя с последними, отделиться от изделия под влиянием атмосферных явлений не может.
Фибробетоны с полипропиленовыми волокнами. Из полимерных волокон, применяемых для армирования бетона, наиболее распространены полипропиленовые. Отличительная их особенность - хорошая совместимость с портландцементом и высокая стойкость в среде твердеющих вяжущих. Полипропиленовые, как и другие полимерные волокна изготавливают диаметром 10-500мкм. В поперечном разрезе они могут иметь как круглую, так и прямоугольную форму.
Введение в бетонную смесь 0,1-1% (по объему) полипропиленовых волокон позволяет уменьшить расслаиваемость смеси и улучшить ее перекачиваемость насосом, существенно повысить деформативность и трещиностойкость бетона. Полипропиленовые волокна так же, как и стальные, значительно повышают раннюю прочность композитов на растяжение. При добавке уже 0,1% волокна усадка снижается до 50%, существенно увеличивается прочность бетона на изгиб и сопротивление удару. Бетоны с полипропиленовыми волокнами имеют высокую морозостойкость, бак-терицидность, огнестойкость. Их применяют в конструкциях морских сооружений, мостов, водохранилищ, торкретных облицовках. По сравнению со стальной фиброй полипропиленовая проще дозируется, облегчает укладку бетонной смеси.

Авторы: Л. И. Дворкин, О. Л. Дворкин


  • Что такое пмд в бетоне, необходимость их использования в холодное время года и влияние на скорость затвердевания.
  • В нашей системе расценки за кубометр бетона складывается в процессе соперничества между растворо-бетонными заводами в Люберцах и окрестностях.
  • Представленная в разделе информация поспособствуют оптимизации стоимости бетона в Щелково.


МОСКВА:
БалашихаБронницыВолоколамский районВоскресенский районДмитровский районДомодедовоЕгорьевский районЗарайский районИстринский районКаширский районКлинский районКоломенский районКоролёвКрасногорский районЛенинский районЛобняЛотошинский районЛуховицский районЛюберецкий районМожайский районМытищинский районНаро-Фоминский районНогинский районОдинцовский районОзерский районОрехово-Зуевский районПавлово-Посадский районПодольский районПушкинский районРаменский районРузский районСергиево-Посадский районСеребряно-Прудский районСерпуховский районСолнечногорский районСтупинский районТалдомский районХимкиЧеховский районШатурский районШаховской районЩелковский район
Бетоны: М100 (В7,5) | М150 (В12,5) | М200 (В15) | М250 (В20) | М300 (В22,5) | М350 (В25) | М400 (В30) | М450 (В35) | Тощий бетон |

Керамзитобетон: М100 (В7,5) | М150 (В12,5) | М200 (В15) | Растворы: М100 | М150 | М200 | Известковый | Пескобетон: М250 (В20) | М300 (В22,5)

Бетонная тендерная система «М350» Телефон: +7 (495) 589-09-28   |   E-mail: info@m350.ru
Дизайн-бюро «Кукумбер»