Главная » Статьи » Активация цементных систем как этап получения качественного бетона

Активация цементных систем как этап получения качественного бетона

Под активацией цементно-водных суспензий, растворных и бетонных смесей понимают различные физические, физико-химические и химические способы воздействия, как на отдельные компоненты, так и на их композиции, приводящие к интенсификации процессов структурообразования, модифицированию структуры и свойств композитов.
Активированным состоянием вещества называется некоторое критическое промежуточное его состояние, через которое проходит протекающий во времени процесс.
По К. Мейеру активированными твердыми телами называют тела с термодинамически нестабильным расположением элементов кристаллической решетки, отличающиеся повышенным значением свободной энтальпии. Активирующие воздействия приводят к изменению энергетического состояния вещества, интенсивности их взаимодействия.
В соответствии с уравнением Аррениуса константа скорости химического процесса (К) определяется в основном энергией активации (Еа) и температурой (Т):
К = 5ехр(-Еа/RТ)
Уменьшение Еа достигается различными способами механических, механохимических, гидравлических, магнитных и других воздействий.
В технологии бетона многие исследования посвящены вопросам механической и механохимической активации, как исходных компонентов, так и готовой смеси. При этом достигается существенная интенсификация процессов твердения, увеличение прочности и улучшение ряда других свойств.
Ряд работ выполнен по активации цементов путем их домола с применением вибромельниц. Мокрое измельчение (активация) цементов более эффективно, чем сухой домол. Существенный недостаток мокрой активации состоит в том, что при В/Ц ниже 0,4 ее влияние резко снижается. Эффективность дополнительного помола цемента можно повысить при совместном помоле его с добавками ПАВ.
Для предварительной активации цемента положительно зарекомендовали себя роторно-пульсационные аппараты (РПА), при работе которых за счет сложного волнового движения частиц цементной пульпы происходит доизмельчение цементных зерен.
Ю.Я.Штаерман предложил приготовлять бетон путем перемешивания заполнителей с предварительно виброактивированным цементным тестом либо с цементно-песчаным раствором жесткой консистенции. Виброактивация проводилась погружением внутреннего вибратора в емкость с цементным тестом или раствором.
При виброактивации увеличивается число коллоидных частиц в смеси, более равномерно распределяется вода между зернами цемента. Эффект виброактивации, по мнению большинства исследователей, особенно ощущается в первые сутки твердения, когда прочность образцов может повышаться до 30-40%.
Позднее предложен вибрационный способ перемешивания компонентов бетонной смеси, предусматривающий передачу интенсивных вибрационных импульсов через корпус смесителя. Эффект повышения прочности виброперемешанных бетонов медленно затухает во времени, оно более эффективно для жестких смесей с низким В/Ц, которые труднее приготовить в обычных смесителях.
Степень повышения прочности бетона, достигаемая в результате вибросмешивания, в зависимости от вида цемента, качества заполнителей, состава и подвижности смеси может составлять 17-32%. Опыт работы вибросмесителей показал, однако, их недолговечность. Проблема заключается также в том, чтобы обеспечить приемлемый уровень шума и вибрационные характеристики.
Активация бетонной смеси достигается также при турбулентном перемешивании, основанном на создании высоких градиентов скоростей. Поданным Ю.Г. Хаютина прочность образцов из цементного теста, активированного в турбосмесителе 1-3 мин, в возрасте 1 сут превышает прочность контрольных образцов на 40-50%, а в возрасте 28 сут на 10-20%.
Промышленность выпускает турбулентные смесители со скоростью вращения ротора до 600 об/мин, и конструкции их совершенствуются. Применение турбулентного смешивания позволяет раздельно приготовлять связующее и бетонную смесь в одной емкости и осуществлять механическую активацию крупного заполнителя и цемента.
Раздельный принцип приготовления бетонной смеси положен в основу интенсивной раздельной технологии (ИРТ). При ИРТ в скоростном смесителе-активаторе предварительно приготавливается цементное тесто с добавкой наполнителя (связующее), которое затем перемешивается в обычном смесителе с заполнителями. В турбулентном смесителе частицы многократно соударяются, в результате повышаются однородность и равномерное распределение компонентов, степень смачивания цемента, имеет место физическое и химическое диспергирование, сдирание экранирующих гидросульфоалюминатных пленок с клинкерных частиц и обнажаются новые активные центры их поверхности. При турбулентном смешивании достигается ускорение и увеличение степени гидратации цемента, повышается прочность цементного камня. Поданным В.И. Соломатова, наибольшее увеличение прочности цементного камня (50-60%) обеспечивается при скорости вращения ротора 18-24 м/с и продолжительности перемешивания 60-120 с.
Активационные воздействия на цементное тесто оказывает ультразвуковая обработка. Она вызывает эффект кавитации, диспергирование твердых частиц, микротрещины в кристаллах, что способствует растворению цементных частиц и их более полной гидратации. В отличие от высокочастотного вибрирования при ультразвуковом воздействии относительный прирост прочности возрастает с увеличением В/Ц. Под влиянием волнового давления, возникающего в акустическом поле, формируется плотная и прочная кристаллогидратная структура цементного камня. В опытах И.Н. Ахвердова после ультразвуковой обработки образцов размером 2x2x2 см «клинкерный» камень в 28 суточном возрасте при нормальном твердении имел прочность около 180 МПа, а контрольный - 50 МПа.
Интенсификация процесса упрочнения бетона достигается комплексным воздействием акустического поля с частотой 10-16 кГц и повышенной температуры. Цементное тесто можно предварительно обрабатывать в аэрогидродинамическом активаторе с последующим перемешиванием с заполнителями и разогревом до укладки при 60-65°С. Термоакустическая активация бетонной смеси возможна также при перемешивании в разогретом состоянии в смесителях с акустическими излучателями. Сочетание активации с предварительным разогревом позволяет примерно в 1,5 раза увеличить 28-суточную прочность бетона.
В конце первой стадии структурообразования бетона, когда сформировался пространственный каркас коагуляционной структуры, наблюдается положительный эффект при повторном виброуплотнении. Приложение вибрационных воздействий в оптимальное время позволяет устранить дефекты, появляющиеся в начальный период твердения бетонных смесей в результате контракции, седиментации и тепловыделения, что дает возможность повысить прочность (в 1,5-2 раза) и долговечность бетона. Повторные вибрации позволяют релаксировать возникающим при структурообразовании внутренним напряжением, залечивать образующиеся структурные дефекты. Наряду с временем приложения механических воздействий эффект повторной вибрации зависит от их частоты. Максимальное увеличение прочности имеет место при ультразвуковых воздействиях. Вибрация с обычными частотами (50-200 Гц) также дает значительное, хотя и меньшее увеличение прочности бетона. Высвободившаяся при дополнительном уплотнении в результате процесса синерезиса вода коагуляционной структуры остается в твердеющей системе. Дополнительно повысить прочность затвердевшего материала можно, если одновременно с повторной вибрацией производить его вакуумирование.
Эффект повторного вибрирования бетонной смеси согласуется с основами теории направленного структурообразования бетона, разработанными О.П. Мчедловым-Петросяном. В соответствии с этой теорией конечный результат различных физико-механических и физико-химических воздействий зависит от момента их приложения, интенсивности и длительности. Механические воздействия, в частности, на сформованные бетонные и железобетонные изделия, необходимо прилагать в строго определенный отрезок времени, когда идет переход от периода формирования к периоду упрочнения структуры. Ее предлагается проводить обычно через 1,5-3 часа после укладки при сохранении коагуляционной структуры. Отмечено, что в результате повторного вибрирования можно повысить прочность бетона при сжатии и изгибе на 10-15%, повысить морозостойкость и водонепроницаемость бетона, улучшить ряд других свойств. Результаты опытов В.Н. Шмигальского показали, что целесообразно либо использовать предварительно выдержанную оптимальное время бетонную смесь, либо формовать ее сразу, применяя затем повторную вибрацию. Приложение вибраций значительно позже оптимального времени может привести к нарушению сцепления бетона с арматурой и появлению трещин.
Развиваются исследования по электромагнитным методам активации, направленным на интенсификацию гидратации отдельных клинкерных минералов, регулированию основности гидросиликатов с помощью воздействия переменным или дискретным постоянным электрическим полем определенной частоты.
Интересные результаты получены при активации цементного теста источниками высоких энергий, аэрогидродинамическими излучателями, а также при магнито-механических, электрогидравлических и термоэлектрических воздействиях на растворы и бетоны.
Перспективны исследования по активации воды затворения бетонной смеси. Согласно современным представлениям вода является микрогетерогенной анизотропной системой, в которой всегда присутствуют ультратонкие частицы и газовые пузырьки, а молекулы воды находятся в непрерывном поступательном движении, определяющем уровень их внутренней связи. Только полярные жидкости могут служить дисперсионной средой для различных цементных композиций, так как именно полярность затворителя обеспечивает достаточную смачиваемость компонентов и образование гидратов, обладающих вяжущими свойствами.
По Дж. Берналу степень ассоциации молекул воды и структура ассоциатов зависят от числа образующихся эффективных связей при взаимодействии с другими молекулами, а также от температуры и давления среды. Принято считать, что эти связи хотя и невелики, но ослабляют электронно-донорные свойства воды и этим вызывают замедление процессов гидратации. Поэтому увеличение количества малоагрегированных молекул воды, например, с помощью электролитов или сильных окислителей, способствует повышению ее активности.
Интенсификации процессов физико-химического взаимодействия в жидкой фазе способствуют:
• свежеконденсированное состояние воды затворения;
• повышение термодинамических параметров системы
(температуры, давления и др.);
• снижение вязкости воды за счет введения некоторых ионов;
• кратковременная обработка воды затворения в энергетических
полях: механических, электромагнитных, акустических, радиационных
и др.);
• деаэрация воды затворения и очистка твердофазных поверхностей от включений и примесей;
• ионизация воды затворения и изменение рН дисперсионной
среды;
• усиление электронно-донорных свойств воды путем снижения
степени ассоциирования ее молекул или ослабления водородной
связи.
Наиболее известным видом активирования воды затворения является электромагнитная обработка, хотя механизм ее действия не вполне ясен и носит дискуссионный характер, а достигаемая эффективность нестабильна во времени и колеблется в широких пределах.
Водные системы способны подчиняться воздействиям внешних энергетических полей, изменяя свою структуру и свойства: гидратационную способность, смачиваемость, поверхностное натяжение, вязкость, емкость ионного объема и др.
В результате колебаний электронной плотности облаков ионов примесных солей под действием электромагнитного поля может происходить изменение энергии их взаимодействия с водой или ее ассоциатами.
Выявленный эффект проявляется в изменении растворимости клинкерных минералов, интенсивности выделения гидратной фазы и дисперсности структурных новообразований.
Эффект увеличения прочности бетона в возрасте 28 сут при электромагнитной обработке воды, по данным различных исследователей, колеблется от 15 до 40%. Отмечено, что эффективность электромагнитной обработки может усиливаться до 55% в «горячих» смесях и при наличии добавок.
Действие ультразвукового поля аналогично действию электромагнитного и в оптимальных условиях обеспечивает прирост прочности бетонов на 25-50%.
Примеси к воде, активированные физическими воздействиями -вводом в вибросмеситель, обработкой в роторной мешалке и др., могут существенно влиять на интенсивность процессов гидратации и структурообразования.
Эффективно затворение бетонной смеси деаэрированной водой, в том числе омагниченной, что сопровождается активизацией поверхности клинкерных минералов за счет разрушения адсорбционных пленок, интенсификацией физико-химического взаимодействия и повышением прочности бетонов в среднем на 30-40%.


Авторы: Л. И. Дворкин, О. Л. Дворкин




МОСКВА:
БалашихаБронницыВолоколамский районВоскресенский районДмитровский районДомодедовоЕгорьевский районЗарайский районИстринский районКаширский районКлинский районКоломенский районКоролёвКрасногорский районЛенинский районЛобняЛотошинский районЛуховицский районЛюберецкий районМожайский районМытищинский районНаро-Фоминский районНогинский районОдинцовский районОзерский районОрехово-Зуевский районПавлово-Посадский районПодольский районПушкинский районРаменский районРузский районСергиево-Посадский районСеребряно-Прудский районСерпуховский районСолнечногорский районСтупинский районТалдомский районХимкиЧеховский районШатурский районШаховской районЩелковский район
Бетоны: М100 (В7,5) | М150 (В12,5) | М200 (В15) | М250 (В20) | М300 (В22,5) | М350 (В25) | М400 (В30) | М450 (В35) | Тощий бетон |

Керамзитобетон: М100 (В7,5) | М150 (В12,5) | М200 (В15) | Растворы: М100 | М150 | М200 | Известковый | Пескобетон: М250 (В20) | М300 (В22,5)

Бетонная тендерная система «М350» Телефон: +7 (495) 589-09-28   |   E-mail: info@m350.ru
Дизайн-бюро «Кукумбер»